Atom-Refined Multiway Greedy Algorithm for Tensor-Based Compressive Sensing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Greedy Approaches for Compressive Sensing of Large-Scale Signals

Cost-efficient compressive sensing is challenging when facing large-scale data, i.e., data with large sizes. Conventional compressive sensing methods for large-scale data will suffer from low computational efficiency and massive memory storage. In this paper, we revisit well-known solvers called greedy algorithms, including Orthogonal Matching Pursuit (OMP), Subspace Pursuit (SP), Orthogonal Ma...

متن کامل

Modified Frame Reconstruction Algorithm for Compressive Sensing

Compressive sensing is a technique to sample signals well below the Nyquist rate using linear measurement operators. In this paper we present an algorithm for signal reconstruction given such a set of measurements. This algorithm generalises and extends previous iterative hard thresholding algorithms and we give sufficient conditions for successful reconstruction of the original data signal. In...

متن کامل

A Simple Homotopy Algorithm for Compressive Sensing

In this paper, we consider the problem of recovering the s largest elements of an arbitrary vector from noisy measurements. Inspired by previous work, we develop an homotopy algorithm which solves the l1-regularized least square problem for a sequence of decreasing values of the regularization parameter. Compared to the previous method, our algorithm is more efficient in the sense it only updat...

متن کامل

Low storage space for compressive sensing: semi-tensor product approach

Random measurement matrices play a critical role in successful recovery with the compressive sensing (CS) framework. However, due to its randomly generated elements, these matrices require massive amounts of storage space to implement a random matrix in CS applications. To effectively reduce the storage space of the random measurement matrix for CS, we propose a random sampling approach for the...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2898669